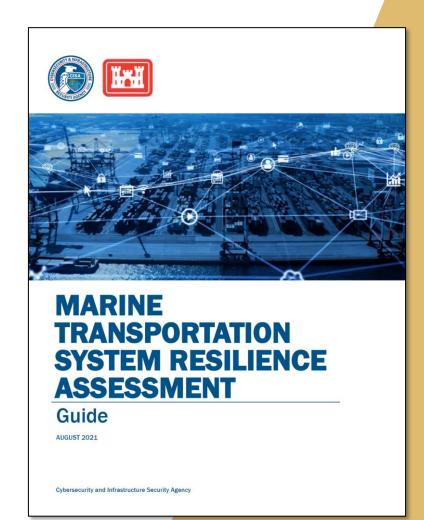
CASE STUDY:

CUMBERLAND/TENNESSEE RIVER INLAND WATERWAY RESILIENCE ANALYSIS

IN SUPPORT OF THE DHS/USACE PORT RESILIENCE GUIDE



Janey Camp, PI
Craig Philip, Co-PI
Miguel M. Moravec

PORT RESILIENCE GUIDE

- The MTS resilience guide advocates for a functional approach to characterization
- The MTS provides two major functions--the transport of people and cargo—and relies upon several sub-functions to enable them:
 - Navigation, cargo transfer, storage, cargo tracking/monitoring, ship services, etc.
- Systems can be characterized by understanding which infrastructure supports which functions throughout the MTS being assessed

PORT RESILIENCE GUIDE -**OBJECTIVES**

Pre-Assessment Help set assessment direction

Support consensus building/buy-in

Design Assessment Support scoping, planning, and data collection strategy

Connect with Resources

Drive method selection

Conduct Assessment Form basis of assessment

Implement Findings

Inform REO development/evaluation

Help articulate findings and build buy in for selected alternatives

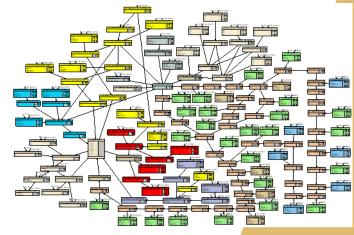
CASE STUDIES TO VALIDATE GUIDE PROCESS

1. Bayesian Network Analysis of Earthquake Resilience at the Port of Portland

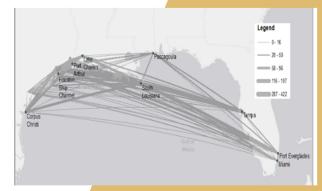
Lead: Dr. Martin Schultz, EL

2. Inland Waterway Petroleum Supply Chain Leads: Drs. Janey Camp and Craig Phillip, Vanderbilt

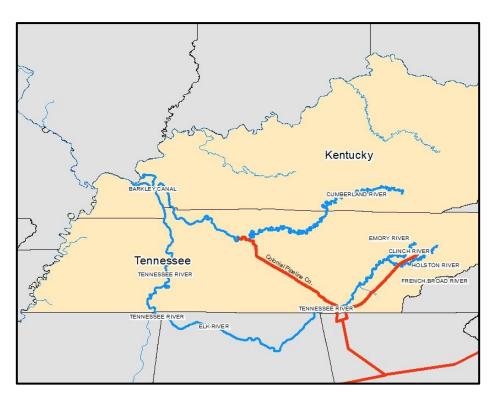
3. National MTS Network Analysis


Lead: Dr. Brandan Scully, CHL

4. Caribbean Critical Supply Chains RRAP Project Leads: CISA HQ, Dr. Paul Lewis and James Butler, Argonne National Lab


5. Institutionalizing Resilience: Insights From Resilience Assessment Initiatives at Sea Ports

Leads: Austin Becker and Ellis Kalaidjian



Bayesian Network of Critica Infrastructure Systems Source: Schultz et al 2016

Network of Gulf Port Connectivity. Source: Scully and Chambers 2019.

TN/CUMBERLAND RIVER SYSTEM REGION OVERVIEW

INLAND WATERWAYS SUPPORT TENNESSEE'S KEY INDUSTRIES Direct Percent of Goods Tennessee Jobs Industry Sub-Category Shipped by Water (Tons) @ 34.2% of inbound **Crop production** 1,860* → 15.0% of outbound 12.0% of inbound Utilities 3,560 € 8.3% of inbound Transportation** & Warehousing 38,560

*Total for Agriculture, Forestry, Fishing, and Hunting sector (NAICS 11)

TOP INLAND WATERWAYS COMMODITIES BY WEIGHT (comprising 62% of total tonnage)

Sand, gravel,	9.4
shells, clay,	million
salt, and slag	tons
	la l

Coal, ligite, and coal coke	6.2 million tons
--------------------------------	------------------------

7.4 Transportation equipment, inclural railcars, aircraft, commercial ships

TOP INLAND WATERWAYS COMMODITIES BY VALUE

(comprising 65% of total value)

\$857.7

TENNESSEE'S INLAND
WATERWAY ASSETS AT
A GLANCE
Tennessee,
Mississippi, and
Cumberland Rivers

^{**}Related to water transportation

KEY RESEARCH QUESTIONS

- Can we ID Ports/Docks/Terminals that can transfer cargos to/from other modes to provide redundancy in the face of disruption and provide system redundancy?
- What are the impacts of natural hazard events on the IW System Operation and Delivery of Commodities?
- Can the Inland Waterway System ensure petroleum product supply to Middle & East Tenn if Colonial Pipeline is disrupted?

PROJECT ACTIVITIES/TASKS

- 1. Plan and Convene **2 Stakeholder Roundtable Sessions**
- 2. Prepare summary of **Priorities and Takeaways** from the Stakeholder roundtables
- 3. Identify and secure necessary data to **Characterize the System**
- 4. Apply Guide methodology/approach and/or RRAP approaches to characterize/evaluate region
- 5. Identify and evaluate 3 disruption scenarios
- **6. Estimate impacts for each scenario** on the case study area & the petroleum supply chain
- 7. Identify potential operational resilience strategies including operational variability and recovery time, etc.

Assessment Objectives

Define functions & characterize the system in steady state

Analyze critical infrastructure & dependencies

Understand the impacts of disruptive events

ID & evaluate resilience enhancement alternatives

ALIGNMENT WITH GUIDE TIERS

Inland Waterway Case Study

→ Analyze the system's key functions and structure throughout disruptions and drops in function.

Outcomes – qualitative metrics and understanding of the recovery process in order to ID intervention opportunities and management plans.

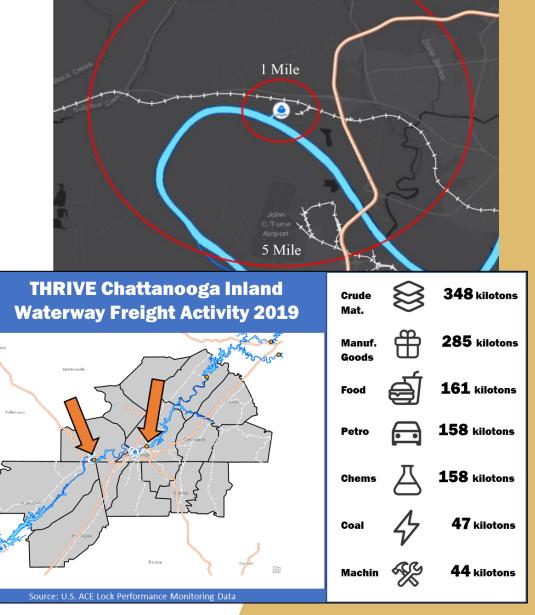
TIER 2

TIER 1

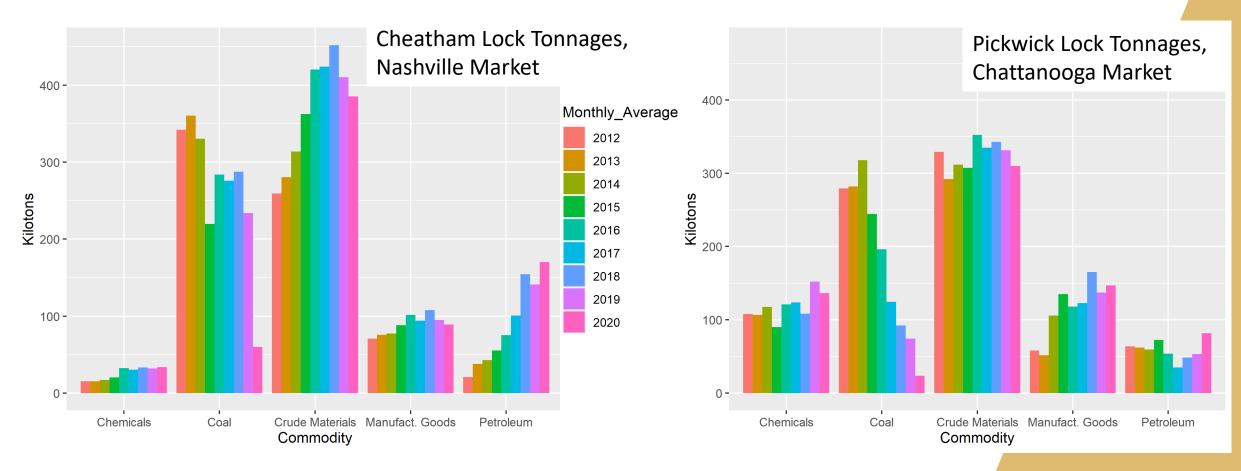
TIER 3

→ ID structure of the system including cascading events during disruption by utilizing both experts and observational data

Outcomes – reveal structure of system and interrelated components to be able to compare project or investments.


→ Seek to understand and prioritize the critical functions of the system

Outcomes – quickly IDs critical functions, key sectors, stakeholders and any gaps or easy wins. If more information is needed to control for resilience, proceed to Tier 2.


CHARACTERIZING THE REGION

- Considering key assets and infrastructure
- Evaluating connectivity and opportunities for multi-modal transfers
- Reviewing historical commodity flows (including during times of disruption)
- Identifying disruptions and potential impacts

CHARACTERIZING THE REGION

STAKEHOLDER INVOLVEMENT - MTG 1

Marine/Barge Carriers

AWO

Tenn-Cumberland Waterways Council HF Lines

Ingram Barge Company

Shippers

TVA

Pine Bluff Aggregates Waterways Council

State Government

TDOT

KY Transp. Cabinet

TEMA

KY EMA

AL DOT

Infrastructure Owners/Operators

US Army Corps of Engineers— Nashville District TVA Columbia Pipeline

Terminal/Port Operators

Pine Bluff Aggregates

HF Lines

Grand Rivers Terminal (Watco)

Port of Decatur

Jasper Industrial Park

NGO's

Cumberland River Compact TRVA

Research

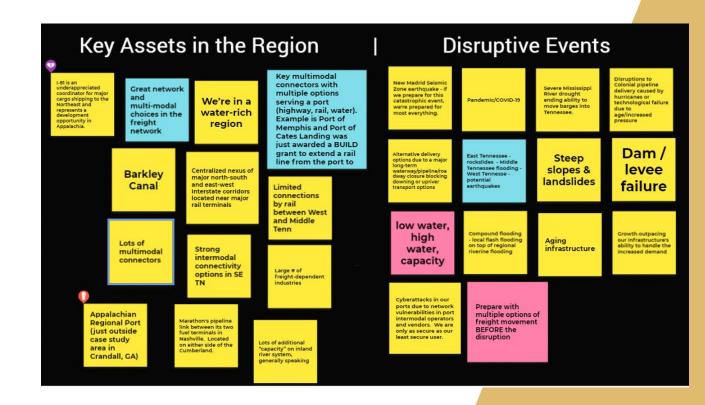
TRB Inland Waterway Committee
TRB Resilience Section
Marine Board

Planning Agencies

Greater Nashville Regional Council Chattanooga TRHIVE

Others

DHS CISA
US Army Corps of Engineers - ERDC
PHMSA
US DOT / CMTS


STAKEHOLDER INVOLVEMENT — MTG 1

Key Assets Identified

- Port of Memphis Intermodal Hub
- Barkley Canal
- Tennessee–Tombigbee Waterway

Disruptions Outlined

- Seismic, Waterway Outage, and Pipeline Disruption
- Lack of Redundancy in Petro and other supply chains
- Resilience Actions

SELECT DISRUPTION SCENARIOS

1. Multimodal Impact Event

Colonial Pipeline Spur to Tennessee

2. Lock Outage

Cheatham Lock and Dam Maintenance

3. Waterway Navigability Impacted by Earthquake

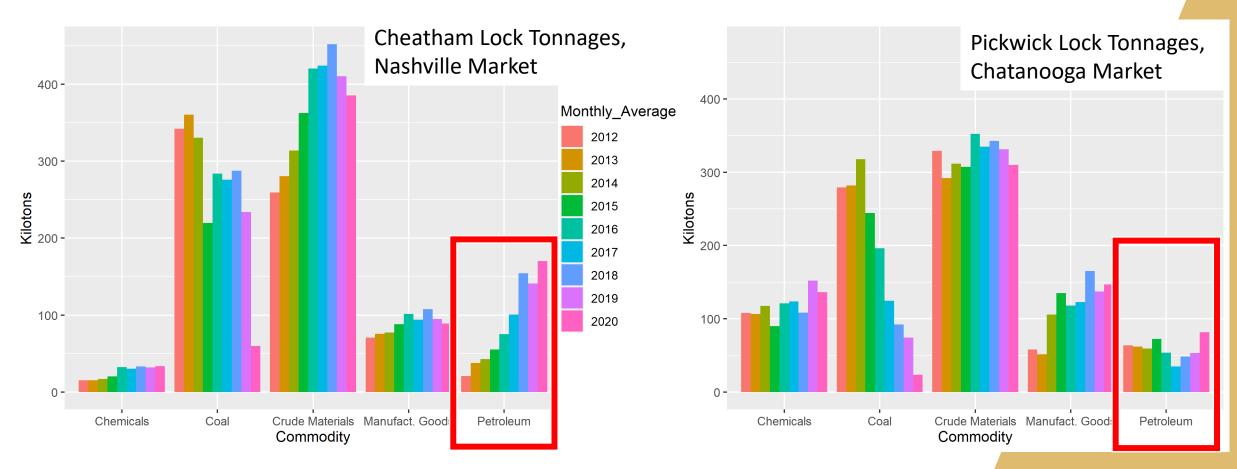
 New Madrid Fault Event Impacting Tennessee/Cumberland/Ohio River Confluence and Bridge Crossings

DISRUPTION SCENARIO:

COLONIAL PIPELINE SPUR TO TENNESSEE, SERVICE INTERRUPTION

CONTINGENCY PLANS, IMPACTS, LESSONS LEARNED, RECOVERY AND RESILIENCE

Miguel M. Moravec PhD Student


HISTORICAL DISRUPTIONS OF COLONIAL PIPELINE

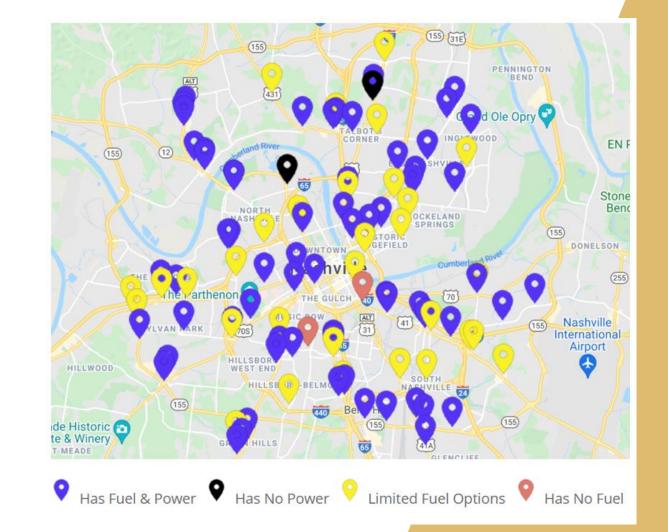
2021 Ransomware Cyberattack

- 2017 Hurricane Harvey Closure
- 2016 Explosion Closure

SINCE 2012 RIVER DELIVERED REFINED PETROLEUM HAS SUPPLEMENTED THE COLONIAL PIPELINE INTO THE NASHVILLE MARKET

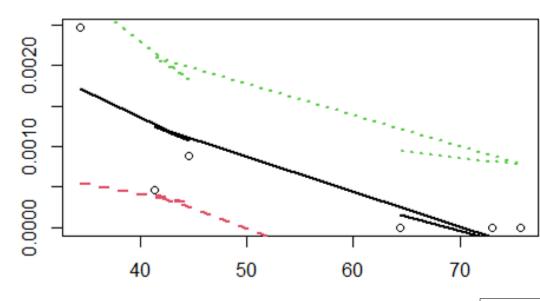
MAJOR SE MARKETS SERVED BY THE COLONIAL PIPELINE

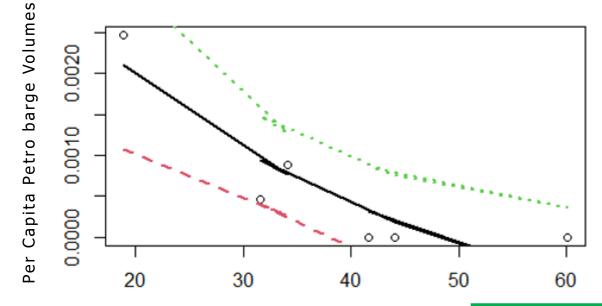
City	Population		
Nashville, TN	692,587		
Chattanooga, TN	179,690		
Knoxville, TN	186,173		
Raleigh, NC	464,485		
Charlotte, NC	857,425		
Asheville, NC	91,560		



WHAT HAPPENED DURING LAST MONTH'S PIPELINE DISRUPTION?

- Source: GasBuddy
 - Quoted by NPR, WSJ, the Tennessean
 - Daily Gas Station Outages by city, daily
 - Largest gas price discovery platform in North America
 - Caveat: crowdsourced

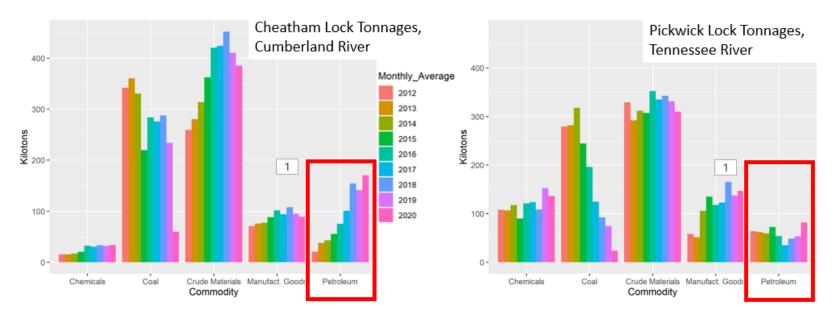

GAS BUDDY DATA CAN MEASURE THE DISRUPTION IMPACT AT THE LOCAL LEVEL


City	7 th Day Station Outages (%)	12 th Day Station Outages (%)	Annual Petro Vol (kt)	Population [43]	Per Capita Petro barge Volumes (kt/person)
Nashville, TN	34.4	18.9	1715	692,587	0.002476
Chattanooga, TN	44.6	34.1	158	179,690	0.000879
Knoxville, TN	41.4	31.6	85.83	186,173	0.000461
Raleigh, NC	75.7	44.1	0	464,485	0
Charlotte, NC	66.4	41.6	0	857,425	0
Asheville, NC	73	60.1	0	91,560	0

WATERBORNE PETRO VOLUMES & GAS STATION OUTAGE ANALYSIS

7th Day Log Model

12th Day Log Model


Gas Station Outages (%)

Statistical Metrics	7 th Day Linear	7 th Day Log	12 th Day Linear	12 th Day Log
	Model	Model	Model	Model
P-Value	0.05409	0.03488	0.04407	0.01105
Adjusted R ²	0.5571	0.6391	0.5973	0.7917
Std. Error	.00001634	0.000788	.00001985	0.000507

Per Capita Petro barge Volumes

Q: To what extent can the inland waterway system **ensure supply of petroleum products** to the Middle and East Tennessee regions during a disruption of the Colonial Pipeline?

City	7 th Day Station Outages (%)	12 th Day Station Outages (%)	Annual Petro Vol (kt)	Population [43]	Per Capita Petro barge Volumes (kt/person)
Nashville, TN	34.4	18.9	1715	692,587	0.002476
Chattanooga, TN	44.6	34.1	158	179,690	0.000879
Knoxville, TN	41.4	31.6	85.83	186,173	0.000461
Raleigh, NC	75.7	44.1	0	464,485	0
Charlotte, NC	66.4	41.6	0	857,425	0
Asheville, NC	73	60.1	0	91,560	0

A: Supply disruption in Nashville was *much lower* than reported in other markets.

RESILIENCE ENHANCEMENT OPTIONS (REOS) IDENTIFIED IN PREVIOUS DHS MARINE RELATED PROJECTS

Compile and Document Information

- Infrastructure vulnerabilities and priority list for repair
- Critical infrastructure lists
- Roles/responsibilities during disaster scenarios
- Standard and alternate operating procedures

Collaborate and Coordinate

- Host a series of planning workshops to familiarize partners with risk
- Inform public and private entities of relevant vulnerabilities to systems and provide support for enhancing resiliency
- · Work collaboratively with local, state, and federal emergency management organizations

Improve existing infrastructure

- Address aging infrastructure (bridges, locks, dams)
- · Undertake soil liquefaction mitigation efforts in earthquake prone areas
- Share results of natural hazard modeling on facility specific basis to encourage owner/operator hazard mitigation planning

Incorporate Additional Tools

- Vessel Queue Prioritization and Sorting Tool (USCG)
- Cyber Security Evaluation Tool (CSET) and Cyber Resilience Review (CRR)

STAKEHOLDER MEETING 2

Disruption Scenario 1 – Multimodal Impacts

- Colonial Pipeline Spur to Tennessee, Service Interruption
 - Megan Simpson USACE Nashville District
 - Ben Bolton TDEC Office of Energy Program's (OEP)
 - Barry Gipson James Companies, former Pipeline Company Executive
 - Moderator: Miguel Moravec Vanderbilt University

Takeaways

- Develop additional liquid bulk waterway terminal capacity
- Identify mothballed terminals, especially near multimodal assets
- Continue strong industry / government collaboration

STAKEHOLDER MEETING 2

Disruption Scenario 2 – Lock Outage

- Cheatham Lock and Dam Maintenance
 - Megan Simpson USACE Nashville District
 - Gene Whelan Pine Bluff Materials, Operator of Largest Multicommodity Marine Terminal on the Cumberland River
 - Steve Southern Ingram Barge Company, Activation of Waterway Action Plans to Improve Stakeholder Coordination
 - Moderator: Craig Philip Vanderbilt University

Takeaways:

- Update Building Codes
- Continue strong industry / government collaboration

STAKEHOLDER MEETING 2

Disruption Scenario 3 – Waterway Navigability Impacted by Earthquake

- New Madrid Fault Event Impacting Tennessee/Cumberland/Ohio River Confluence and Bridge Crossings
 - James M. Wilkinson, Jr. Executive Director, CUSEC (Central US Earthquake Consortium)
 - Ben Bolton TDEC Office of Energy Program's (OEP)
 - Moderator: Janey Camp Vanderbilt University

Takeaways:

- Increase Traffic on Tombigbee River
- Update Building Codes
- Rely on resilient, alternate energy sources / vehicles

RESILIENCY ENHANCEMENT OPTIONS FOR REGION

Expand Chattanooga and Knoxville terminals to accept fuel barges

- Theme: Improve existing infrastructure
- Note: Colonial pipeline purchased one of the fuel terminals in Chattanooga, so when their services went offline it impacted that terminal as well

Increase Traffic on Tombigbee River

- Theme: Collaborate and Coordinate
- Scenarios: Earthquake impacting Mississippi river, shutdown of colonial pipeline
- Note: TennTom much more narrow than Cumberland, Tennessee

Update Building Codes

- Theme: Improve existing infrastructure
- Scenarios: All
- Proactive building codes are among best mitigation techniques

SUMMARY

- Applied Port Resilience Guide approach to an inland system
- Involved stakeholders through process
- Identified key disruption scenarios and considered impacts
 - Unique disruption provided additional study benefit
- Key resilience enhancement options identified

VANDERBILT CENTER FOR TRANSPORTATION AND OPERATIONAL RESILIENCY (VECTOR)

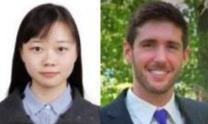
Craig Philip Director of VECTOR

Mark Abkowitz

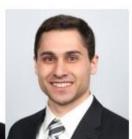
Hiba Baroud

Janey Camp, Associate Director of VECTOR

Bob Stammer


Dan Work

Abhishek Dubey



For information, contact:

Craig Philp - craig.e.Philip@vanderbilt.edu, or Janey Camp - janey.camp@vanderbilt.edu, or Miguel Moravec - miguel.moravec@vanderbilt.edu

